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Outline 

•  Cercion 3D code description 
–  Calculation of nodal forces 
–  Artificial viscosity treatment 
–  Energy equation 
–  Time integration method 

•  Hourglass Control Technique 
•  Test Problems 

–  Saltzman piston 
–  3D Sedov 
–  3D Noh 
–  Verney imploding shell 

•  Conclusions 
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The hydrodynamics in Cercion 3D is solved on a staggered grid consisting of 
hexahedral cells with eight nodes 

•  3D Cartesian geometry 
•  Block structured mesh 

−  Hexahedral cells with six faces 
−  Fixed connectivity among mesh blocks 
−  Velocities at the nodes 

•  Cell oriented data structures 
−  C implementation 
−  Fortran-type array indexing 
−  Storage for nodal quantities such as 

position and velocity components 
−  Cell-centered quantities such as density, 

pressure and volume 
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A finite element approach is used to calculate the cell-centered 
velocity gradient and nodal forces  

•  Uppercase index denotes the cell 
node (1 thru 8) 

•  Lowercase index denotes spatial 
dimension (1 thru 3) 

Tensor Indexing Conventions 

The velocity gradient at the cell center can be calculated 
from the cell volume, V, and nodal velocities, uiI  
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jIijiI BTf −=

The nodal forces associated with a particular cell are 
determined from the cell-centered Chaucy stress tensor, Tij 

The B matrix (3 x 8) is calculated using the finite element 
method of Flanagan and Belytschko (1981)  
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The B matrix and cell volume can be expressed in terms of the nodal 
coordinates using six basis vectors for the hexahedron 
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B matrix Cell volume 

Basis vectors associated with shear, 
strain, rotation and hourglass modes 

physical hourglass 

Note Γ4I is not used 
in calculating CIJK 
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Nodal forces are calculated to filter the hourglass modes 

•  Flanagan and Belytschko (1981) method of 
identifying the portion of the nodal velocity field 
attributed to hourglass modes 

( )jjIjiiiI
HG
iI xxuuuu −−−= ,

•  Margolin and Pyun (1987) method of directly 
filtering the nodal velocities at every cycle 

HG
iIiIiI kuuu −=*

•  Nodal forces for hourglass dissipation in Cercion 3D 

( )[ ]iIjjIjii
HG
iI uxxuu

t
kMf −−+
Δ

= ,

k is the single free parameter in the model 

Illustration of the hourglass modes (4) associated 
with x component of nodal velocity field 

There are a total of 12 hourglass modes for 
the hexahedron 
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A non-mimetic form of the internal energy equation was implemented 
in Cercion 3D  

( )( ) ( )1,3313,2232,1123,3332,2221,1113,32,21,1 2 ετετετετετετεεερ  +++++++++−= qp
Dt
De

( )ijjiji uu ,,, 2
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+=ε

Semi-discrete energy equation where all quantities are cell-centered at time n 

( )UaCUCq 2
2

1 −= ρ

Symmetric strain rate tensor 

Artificial viscosity model with both linear and quadratic terms  

∑=
i

iiVU ,
3/1 ε

for U < 0 otherwise q=0 

( )ijjiji uuw ,,, 2
1

−=

Anti-Symmetric strain rate tensor 

a is the sound speed 

C1 = 2.0 
C2= 0.1 
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The Lagrangian equations of motion are integrated in time with a two step 
Runge-Kutta method 
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Advancing  the nodal velocity components 
from time n to n+1 in two steps 

M is the fixed nodal mass and C is the set 
of eight cells that surround the node 
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Advancing  cell-centered stress deviators 
from time n to n+1 in two steps 

Similar predictor-corrector update for the energy equation 
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The locations of the shock and contact discontinuity for the Sod test 
problem are captured by the code 

•  An initial discontinuity 
between two ideal gas 
regions (γ=1.4) 

•  Region 1 
–  density of 1 g/cm3 

–  pressure of 1 Mbar 

•  Region 2 
–  density of 0.125 g/cm3 

–  pressure of 0.1 Mbar 

•  The solution is obtained at 
0.1415 µs  

Setup 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA 

Slide 10 

Both pressure and density converge to approximately first order in 
spatial resolution 
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Flyer plate problem tests the material strength treatment in the code 

•  Cylindrical geometry with 1 radial zone 
•  Aluminum target 

–  1 cm thick with 200 axial zones 
•  Aluminum projectile 

–  0.2 cm thick with 40 axial zones 
•  Gruneisen EOS 

ρ0=2.707 
C0=0.5386 
S1=1.339 
γ0=1.97 
b=0.48 

•  Material strength model 
–  yield strength of 0.0004 Mbar 
–  shear modulus of 0.271 Mbar 

•  Companion FLAG 2D calculation 
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The Saltzman piston problem provides a means to determine acceptable 
values of the hourglass dissipation parameter, k 

•  Caramana et al. (2000) 
•  Skewed piston 

–  square cross section of 0.1 cm 
by 0.1 cm 

–  1 cm in length 
–  Fixed velocity of 1 cm/µs on left 

boundary  
–  Initial density of 1 g/cm3 

•  0.7 µs run time 
•  100 x 10 x 10 cells 
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π for 0 ≤ j ≤ 5 

for 6 ≤ j ≤ 10 

k=0.005 was chosen for the other test problems in this work 
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The calculated shock position is sensitive to the value of k 

Time = 0.7 µs 
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The 3D Noh problem was simulated with Cercion 3D 

•  1 cm octant with 60 x 60 x 60 cells  
•  1 cm/µs initial velocity directed 

toward the origin 
•  Uniform initial pressure of zero 

and density of 1 g/cm3 

•  Ideal gas with γ=5/3 

Density contours for 3D Noh problem at 0.6 µs 
showing the locations of five probe lines 

Density (g/cm3) 

Setup 
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Numerical results for 3D Noh problem are relatively symmetric 
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The numerical solution is sensitive to the artificial viscosity 
model 

( )UaCUCq 2
2

1 −= ρ

Artificial Viscosity Model 
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The 3D Sedov blast wave problem is a stringent test of numerical 
methods in the code 

•  An ideal gas (γ=5/3) 
•  A 1.2 cm octant (80 x 80 x 80 cells) 
•  Energy source at the origin 

–  56 kJ 
•  The solution is obtained at 1.0 µs  

Density contours for 3D Sedov problem at 1.0 µs 

Density (g/cm3) 
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The calculated blast front leads the analytic solution by a small 
amount but the symmetry of the front is good 
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The Verney problem testes the ability of the code to convert kinetic energy 
into internal energy for a constant density implosion 

•  Imploding steel shell 
•  inner radius of 8 cm  
•  0.5 cm thick 

•  Initial velocity profile 

•  u0=0.14 cm/µs 
•  results in constant density implosion 

•  Simple strength model 
•  shear modulus, µ=0.895 Mbar 
•  yield stress of 0.050 Mbar 

•  Gruneisen EOS 
ρ0=7.90 
C0=0.457 
S1=1.49 
γ0=1.93 
b=0.50 

•  Analytic solution from Weseloh (2007) 

 

Computational mesh for the Verney test problem 
at 0 µs and 55 µs 

§  3 mesh blocks with 64 x 64 x 20 cells each 
§  Parallelization using OpenMP 

grid lines for 
one of the 
mesh blocks 

0 µs 

55 µs 

( )20
2
0 / rruu =
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The calculated internal energy history of the shell agrees well with the 
analytic solution 
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Conclusions 

•  A finite element approach is used to calculate the cell-centered velocity gradient and 
nodal forces for Lagrangian hydrodynamics in Cercion 3D 

•  A simple model is used to calculate nodal forces that dissipate hourglass modes 
•  The optimum hourglass dissipation parameter, k, is determined from simulations of the 

3D Saltzman piston problem and is less than the typical value used for 2D simulations 
•  Excellent agreement with the analytic solution is achieved for the Sod shock tube 

problem and approximate first order convergence is demonstrated 
•  The calculated blast front for the Sedov problem leads the analytic solution by a small 

amount but the symmetry of the front is good 
•  Cercion 3D captures the time evolution of the shell internal energy in the Verney test 

problem 


